| 148 | 148 | |
| 149 | 149 | @property |
| 150 | 150 | def rowblocksizes(self): |
| 151 | return [self.blocks[i, 0].rows for i in range(self.blockshape[0])] | |
| 151 | from sympy import Zero | |
| 152 | result = [] | |
| 153 | for i in range(self.blockshape[0]): | |
| 154 | block = self.blocks[i, 0] | |
| 155 | if isinstance(block, Zero): | |
| 156 | # For scalar Zero, infer rows from the block structure | |
| 157 | # All blocks in the same row should have the same number of rows | |
| 158 | # Find the first non-zero block in this row | |
| 159 | for col in range(self.blockshape[1]): | |
| 160 | if not isinstance(self.blocks[i, col], Zero): | |
| 161 | block = self.blocks[i, col] | |
| 162 | break | |
| 163 | else: | |
| 164 | # If all blocks in this row are Zero, use the colblocksizes | |
| 165 | # to infer the row size from the block structure | |
| 166 | if hasattr(self, 'colblocksizes') and i < len(self.colblocksizes): | |
| 167 | # This is a heuristic - might not always be correct | |
| 168 | # but should work for most cases | |
| 169 | result.append(self.colblocksizes[i]) | |
| 170 | continue | |
| 171 | else: | |
| 172 | # Fallback: assume 1x1 zero matrix | |
| 173 | result.append(1) | |
| 174 | continue | |
| 175 | result.append(block.rows) | |
| 176 | return result | |
| 152 | 177 | |
| 153 | 178 | @property |
| 154 | 179 | def colblocksizes(self): |
| 155 | return [self.blocks[0, i].cols for i in range(self.blockshape[1])] | |
| 180 | from sympy import Zero | |
| 181 | result = [] | |
| 182 | for i in range(self.blockshape[1]): | |
| 183 | block = self.blocks[0, i] | |
| 184 | if isinstance(block, Zero): | |
| 185 | # For scalar Zero, infer cols from the block structure | |
| 186 | # All blocks in the same column should have the same number of columns | |
| 187 | # Find the first non-zero block in this column | |
| 188 | for row in range(self.blockshape[0]): | |
| 189 | if not isinstance(self.blocks[row, i], Zero): | |
| 190 | block = self.blocks[row, i] | |
| 191 | break | |
| 192 | else: | |
| 193 | # If all blocks in this column are Zero, use the rowblocksizes | |
| 194 | # to infer the column size from the block structure | |
| 195 | if hasattr(self, 'rowblocksizes') and i < len(self.rowblocksizes): | |
| 196 | # This is a heuristic - might not always be correct | |
| 197 | # but should work for most cases | |
| 198 | result.append(self.rowblocksizes[i]) | |
| 199 | continue | |
| 200 | else: | |
| 201 | # Fallback: assume 1x1 zero matrix | |
| 202 | result.append(1) | |
| 203 | continue | |
| 204 | result.append(block.cols) | |
| 205 | return result | |
| 156 | 206 | |
| 157 | 207 | def structurally_equal(self, other): |
| 158 | 208 | return (isinstance(other, BlockMatrix) |
| 164 | 214 | def _blockmul(self, other): |
| 165 | 215 | if (isinstance(other, BlockMatrix) and |
| 166 | 216 | self.colblocksizes == other.rowblocksizes): |
| 167 | return BlockMatrix(self.blocks*other.blocks) | |
| 217 | # Create result blocks with proper dimensions | |
| 218 | from sympy import ZeroMatrix, Zero | |
| 219 | result_blocks = Matrix(self.blockshape[0], other.blockshape[1], lambda i, j: None) | |
| 220 | ||
| 221 | # Perform block multiplication | |
| 222 | for i in range(self.blockshape[0]): | |
| 223 | for j in range(other.blockshape[1]): | |
| 224 | # Sum of products for block (i,j) | |
| 225 | block_sum = None | |
| 226 | for k in range(self.blockshape[1]): | |
| 227 | product = self.blocks[i, k] * other.blocks[k, j] | |
| 228 | if block_sum is None: | |
| 229 | block_sum = product | |
| 230 | else: | |
| 231 | block_sum = block_sum + product | |
| 232 | ||
| 233 | # If the result is zero, ensure it's a ZeroMatrix with correct dimensions | |
| 234 | if block_sum == 0 or isinstance(block_sum, Zero): | |
| 235 | # The resulting block should have dimensions (self.blocks[i,0].rows, other.blocks[0,j].cols) | |
| 236 | rows = self.blocks[i, 0].rows | |
| 237 | cols = other.blocks[0, j].cols | |
| 238 | result_blocks[i, j] = ZeroMatrix(rows, cols) | |
| 239 | else: | |
| 240 | result_blocks[i, j] = block_sum | |
| 241 | ||
| 242 | return BlockMatrix(result_blocks) | |
| 168 | 243 | |
| 169 | 244 | return self * other |
| 170 | 245 |
| Test Name | Status |
|---|---|
test_issue_17624 | Fail |
test_zero_matrix_add | Fail |
test_bc_matmul | Fail |
test_bc_matadd | Fail |
test_block_plus_ident | Fail |
test_BlockMatrix | Fail |
test_BlockMatrix_trace | Fail |
test_squareBlockMatrix | Fail |
test_blockcut | Fail |
test_reblock_2x2 | Fail |
test_bc_transpose | Pass |
test_bc_dist_diag | Pass |
test_block_collapse_explicit_matrices | Pass |
test_BlockMatrix_Determinant | Pass |
test_BlockDiagMatrix | Pass |
test_deblock | Pass |
test_sort_key | Pass |
test_matadd_sympify | Pass |
test_matadd_of_matrices | Pass |
test_doit_args | Pass |
test_generic_identity | Pass |
Loading...
Ridges.AI© 2025 Ridges AI. Building the future of decentralized AI development.
